Ammonia Controlled Aeration

CSWEA 85th Annual Conference

Don Esping, P.E. May 15, 2012

Ammonia Controlled Aeration Goals

- Reduced energy consumption
- Reduced total nitrogen

Table 6: Overview of simulated and full-scale energy savings and improvements of total nitrogen removal

	WWTP Morgental 35,000 PE		WWTP Thunersee 130,000 PE		WWTP Werdhoelzli
					600,000 PE
	simulation	full-scale	simulation	full-scale	simulation
Energy	-30%	-20%	-30%	-16.5%	-25%
TN removal	+48%	+40%	+60%	+40%	+32%

• Rieger, WEFTEC 2010

Outline

- Ammonia Sensors
- Ammonia Aeration Control Strategies
- Case Studies
- Close

Ammonia/Nitrogen Sensors

Santa Clara/San Jose Ammonia Sensor Evaluation

Typical Aeration Basin Control Strategy

Ammonia/Aeration Basin Control Strategies

Ammonia Feedback Control

Cascade to DO set point (or visa versa)

Example

NH4 < 1.5 mg/L then DO setpoint = 0.5 mg/L NH4 >1.6 mg/L then DO setpoint = 2.0 mg/L

Ammonia Feed Forward – Feedback Control

Ammonia Feed Forward – Feedback Control

- Flow: 8 mgd
- Design Capacity: 23.6 mgd MLE facility
- Blowers
 - Small/Large
- Permit
 - Ammonia
 - pH

- Initial Control Strategy
 - Ammonia cascade loop w/DO control

Findings

- Biological response to ammonia "slug" was fast
- Control slow to adjust DO setpoint
- More complexity & difficult to control and tune

Base Aeration Control Strategy

Item	Value	Comments
Pass B - Ammonia Control		
Effluent NH ₄ Setpoint	1.5 mg /L 0.2 mg/L (am only)	Operator input
Pass B Middle NH ₄ Setpoint	Eff NH4 target * CF1 (70 % removal)	Algorithm from Historical trends
Pass C NH ₄ Setpoint	Eff NH4 target * CF2 (90 % removal) Check on Pass B Sensor	
Target D.O (Secondary)	0.5 – 3.5 mg/L	Filament control
Pass C – DO Control		
D.0 Setpoint	>0.5 mg /L	Prevent denitrification in secondary clarifiers

Brown and Caldwell | May 15,2012

Lessons Learned

- Sensors are reliable with proper maintenance
 - Calibrate \approx monthly
 - 1 -2 hours/calibration/probe (recommend Hach kits)
 - Replace sensor caps every 6 months
- Algorithm takes time to develop and change
- ≈20% energy savings
 - Save during off-peaks
 - Blower turndown essential
- Beneficial for plant nitrifier upsets
- PE difficult sensor application head of bioreactor for feed forward control

Case Example 2 – Aerated Zone Control

Aerated Zone DO setpoints based upon Feed-Forward anoxic zone ammonia using process model correlations

20% airflow savings overall

Source: WST, 61.9,2010

Ammonia Aeration Control - General

Need reliable and accurate sensors – test sensors for requirements

Control can be more complex Sensor outlay and maintenance More monitoring More maintenance (0.5 to 3 hours/week/device) Cascade loops – lag times/fine tuning Historical treatment or process model algorithms Feed-forward provides greater safety w.r.t peak loadings

Blower turndown

Low D.O. bulking a concern-especially if 1st aerobic zone D.O. <2.0 mg/L

Close

Special Thanks
 Jay Hardison and Bill Hoyt, Colorado Springs Utilities

Questions

desping@brwncald.com